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Abstract: - In this paper, the behavior of a second-order dynamical system around its equilibrium point 
will be analyzed based on the behavior of some appropriate equipotential curves which will be 
considered around the same equilibrium point. In fact two sets of equipotential curves are considered 
so that a set of the equipotential curves has a role as the upper band of the system trajectory and 
another set plays a role as the lower band. It will be shown that stability of the system around its 
equilibrium point can be assessed using the behavior of these two set of equipotential curves. As will 
be shown, asymptotically stability and instability analysis of the system only need the analysis of the 
upper band set of the equipotential curves, but oscillation behavior analysis of the system need to 
analyze both the lower band set of the equipotential curves and the upper band set. The method can 
even detect a stable limit cycle appearing in the oscillation systems. The proposed method is 
geometric and has some applications such as designing of oscillators. Finally, some examples, 
practical designing of oscillators and simulation results will be presented to verify and validate the 
presented method. 
 
 
Key-Words: - Equilibrium point, stability, instability, autonomous system.  
 
 
1 Introduction 

As we know, two classic methods are 
essentially used to analyze the stability of a 
nonlinear system [1], [2]. The first method is 
stability analysis using energy function and the 
second method is based on the linearization of 
the system around its equilibrium point.   
Sometimes the first method is called “Direct 
Method” and the second method is called 
“Indirect Method”. In fact, the first method was 
presented by the mathematician called 
Lyapunov. The complexity of the first method 
is to find the appropriate energy functions to 
assess the stability of a nonlinear system. The 
second method has two major weaknesses. 
Firstly, if the eiginvalues of the coefficient 

matrix in the linear system resulted of 
linearization have real parts that are equal zero, 
the original nonlinear system may be stable or 
instable around the equilibrium point. Secondly, 
the method can only assess stability as the form 
of local stability around the equilibrium point. 
The proposed method mentioned in this paper is 
a geometric method which is suitable to analyze 
the stability of a second-order autonomous 
systems. This kind of system is very important 
because it models the behavior of some devices 
such as oscillators [3].    

Also two basic methods are essentially used 
to analyze the behavior of limit cycles 
appearing in nonlinear system [1], [2]. The first 
method is to draw the trajectories of the system 
using the softwares such as Matlab in order to 
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detect the limit cycles of the system. It is clear 
that the limit cycles that is detected by this 
approach can be recognized as stable, unstable 
or semi-stable [1], [2]. The second method is 
based on the linearization of the system around 
its equilibrium point or points. The second 
method has two major weaknesses. Firstly, the 
equilibrium point of the system, which the 
system is linearized around it, must be on the 
limit cycle or in a small neighborhood of it 
otherwise the method can not detect the real 
behavior of the nonlinear system. Secondly, the 
method can only assess the behavior of the 
system around the limit cycle as the form of 
point to point if and only if these points all 
locate on the limit cycle [1]. Also there are 
several classic methods to design oscillators. 
The most general and important method is 
based on using the equation, which the open 
loop transfer function of the system or 
electronic circuit equals minus one [3]. It is 
clear that the design is done in Laplace domain. 
As we will see, the proposed geometric method 
in this paper is much easier than above method 
to design electronic oscillator [3], [4]. There are 
some researches presenting some geometric and 
numerical methods to analyze the stability and 
behavior of some special systems such as 
Josephson junction system [5-19]. These methods 
can not be applied for analyzing of general 
second or higher order systems.  
 
 
2 Equipotential Curves 

Consider the second-order autonomous 
system described by the following equation 

⎪⎩

⎪
⎨
⎧

=

=

)2,1(22

)2,1(11
xxfx

xxfx

&

&
                                            (1) 

 
Definition 1: A set is said “compact” if it is 

bounded and closed [1], [4]. 
Definition 2: Consider the set called so that P

2RP ⊂ , P is said “invariant set” if the 
trajectories  of the system beginning in 
the P remain in it as  [1], [20], [21]. ∞→t

Definition 3: Suppose that the  is the 
equilibrium point of the second-order 
autonomous system described by the equation 
(1) and suppose that the compact set called M 

includes the equilibrium point (the origin). The 
closed curves belonging the M, which is 
described by o that 

0=X

Cxxu =)2,1(  s RC∈ and 

enclosing the equilibrium point, are called 
equipotential curves because for each value of 

 there is a closed curve with the potential of 
, so all points locating on the 

C
C Cxxu =)2,1(  

have the equal potential the numerical quantity 
of which is C . 

  
 
3 Stability Analysis 

Theorem 1: The second-order autonomous 
system described by (1) is local asymptotic 
stable around the equilibrium point ( 0=X ) if 
there are equipotential curves Cxxu =)2,1(  

with clockwise direction, enclosing the 
equilibrium point and further on the trajectories 
of the system (1)  

)2,1(

dt

xxdu
0< .                                              (2)      

Proof:  From , we have Cxxu =)2,1(

0*
)2,1(

*
)2,1(

2
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=
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∂
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∂

∂
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xxu
x

x
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&&              (3)                

and as a result, the dynamic of  Cxxu =)2,1(  

can be expressed as 

⎪
⎪
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⎪
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                                       (4) 

where and are the state variables of the 

dynamic of  . The velocity vector 

on the 

1*x& 2*x&

Cxxu =)2,1(

Cxxu =)2,1(  symbolized by uV
r

 is 

define as 
21 2*1* xxu uxuxV r

&
r

&
r

+=  , so from (4) 

we found that 

21
)

)2,1(
(

)2,1(

12
xxu u

x

xxu
u

x

xxu
V rrr

∂

∂
−+

∂

∂
=          (5) 

where 
1xur and 

2xur are respectively the unity 
vectors of the axis and axis. Also, the 

velocity vector of  the  system (1) is  defined  as 
1x 2x
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21 21 xx uxuxX r

&
r

&
r
& += ,so it can be written as 

21
)2,1(2)2,1(1 xx uxxfuxxfX rrr

& += .            (6) 

The derivative 
dt

xxdu )2,1(
 on the trajectories of 

the system (1) can be expressed as 

2
2

1
1

)2,1()2,1()2,1(
x

x

xxu
x

x

xxu

dt

xxdu
&&

∂

∂
+
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∂
=    (7) 

or  

XV

xxf
x

xxu
xxf

x

xxu

dt

xxdu

u

r
&

r
×=

∂

∂
+

∂

∂
= )2,1(2

)2,1(
)2,1(1

)2,1()2,1(
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where )sin(. αXVXV uu

r
&

rr
&

r
=× and α  is the angle 

between and uV
r

X
r
& . So the inequality (2) can be 

written as  

0<× XVu

r
&

r
                                                      (9) 

and this means that the direction of the 
trajectories of the system (1) are to inside of the 
equipotential curves  as shown in 

Fig. 1, on the other hand   and C  can be 
changed so that  closed curves 

Cxxu =)2,1(

RC∈
Cxxu =)2(  ,1

enclosing the equilibrium point could tend to be 
smaller and smaller and finally approach to the 
equilibrium point (the origin). This means that 
the direction of the trajectory of the system (1) 
will tend to the origin, so the system (1) is 
asymptotically stable.  

Theorem 2: The second-order autonomous 
system described by (1) is unstable around the 
equilibrium point ( 0=X ) if there are 
equipotential curves  with 

clockwise direction, enclosing the equilibrium 
point and further on the trajectories of the 
system (1)  

Cxxu =)2,1(

0
)2,1(
>

dt

xxdu
.                                            (10)     

Proof: It follows from the proof of the 
theorem 1 that inequality (10) means that 

 

0>× XVu

r
&

r
                                                    (11) 

and in the similar manner with the proof of the 
theorem 1, the direction of the trajectories of the 
system (1) are to outside of the equipotential 
curves Cxxu =)2,1(  as shown in Fig. 2, so the 

trajectories tend to infinity ( far and farther of 
the equilibrium point) and this means that the 
system around the equilibrium point ( 0=X ) is 
unstable. 

Definition 4: A limit cycle is said asymptotic 
stable if all trajectories in vicinity of the limit 
cycle converge to it as . Otherwise the 
limit is semi-stable or unstable[2]. 

∞→t

Theorem3: Consider the second-order 
autonomous system (1), suppose that no 
equilibrium point belongs to the compact set M 
which encloses the origin ( ). There are 
equipotential curves  and 

0=X
1211 ),( Cxxu =

2212 ),( Cxxu =  with clockwise directions that 
belong to M, does not intersect one with 
another, enclose the origin and satisfy the 
following inequalities on the trajectories of the 
system (1)  

0),( 211 ≥
dt

xxdu                                               (12) 

0),( 212 ≤
dt

xxdu                                              (13) 

if and only if there exists an asymptotic stable 
limit cycle L so that 

Ω⊂ intL                                                       (14) 
where )21,( CCΩ is the region located between  

1211 ),( Cxxu =  and . 2212 ),( Cxxu =
 

 
Fig. 1.The system is asymptotic stable. 
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Fig. 2. The system is unstable. 

Proof:   Similar to the theorem 1, the 
inequality (12) can be rewritten as 

)(⇒

0
1

≥× XVu

r
&

r
.                                                   (15) 

This means that the direction of the trajectories 
of the system (1) is to the outside of the 
equipotential curves  as shown in 
Fig. 3. In the similar manner the inequality (13) 
can be expressed as  

1211 ),( Cxxu =

0
2

≤× XVu

r
&

r
                                                   (16) 

where is the velocity vector on the 

 and this means that the direction 
of the trajectories of the system (1) is to the 
inside of the equipotential curves 

2uV
r

2212 ),( Cxxu =

1211 ),( Cxxu =  
as shown in Fig. 3. On the other hand there is 
no equilibrium points belonging to M and 
consequently to , so there is an 
asymptotic stable limit cycle

),( 21 CCΩ
L so that Ω⊂ intL . 

)(⇐ The necessary condition can similarly be 
proofed using above geometric concepts. 
 
Remark1: If on the trajectories of the system (1)  

0),( 211 =
dt

xxdu  or 0),( 212 =
dt

xxdu , the 

equipotential curve  or 
 itself is the limit cycle 

respectively.  

1211 ),( Cxxu =

2212 ),( Cxxu =

 
Example 1: Consider the following system 

⎪⎩

⎪
⎨
⎧

−++=

−−+=

)221(22142

214)221(11
222

222

xxxxxx

xxxxxx

&

&
. 

By choosing Cxxxxu =+= )21(
2
1)2,1( 22 , for 

1<C , it can been seen that not only the 
equipotential curves  are closed 
but also on the trajectories of the system 

Cxxu =)2,1(

0
)2,1(
<

dt

xxdu
, so the system is asymptotic 

stable.  
 
Example 2: Consider the following system 

⎪⎩

⎪
⎨
⎧

+=

−=
7

3

2)1sin(2

14)2sin(1
2

1

xxex

xxex
x

x

&

&
. 

By choosing Cxxxxu =−−= −− 62
23

2
12

1)2,1( , 

for all value of the , it can been seen that not 
only the equipotential curves 

C
Cxxu =)2,1(  are 

closed but also on the trajectories of the system  

0
)2,1(
>

dt
xxdu

, so the system is unstable.  

 
Example 3: Consider the following system 

⎪⎩

⎪
⎨
⎧

−+−−=

−+−=

)10221(2312

)10221(121
2423

247

xxxxx

xxxxx

&

&
. 

By choosing 

1
24

1 22
1

14
1)2,1( Cxxxxu =+= ,for 

5.20 1 << C , it can been seen that not only the 
equipotential curves  are closed 
but also we have 

11 )2,1( Cxxu =

0
)2,1(1 >

dt
xxdu

. Also by choosing  

2
24

2 22
1

14
1)2,1( Cxxxxu =+= , for 25.2 C< , it 

can been seen that not only the equipotential 
curves 22 )2,1( Cxxu =  are closed but also 

0
)2,1(2 <

dt
xxdu

, so there is an asymptotic 

stable limit cycle located between the  
11 )2,1( Cxxu =  and . The area 

located between the  
22 )2,1( Cxxu =

11 )2,1( Cxxu =  and 
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22 )2,1( Cxxu =  is an invariant set as the 
following 
 
 

⎭
⎬
⎫

⎩
⎨
⎧ <+<=Ω 2

24
121 22

1
14

1)2,1(),( CxxCxxCC   (17) 

where . It is clear that the 
limit cycle can be estimated by varying the 

and  in (17). In above set by increasing 
and decreasing , the limit cycle can be 

found as  

21 5.20 CC <<<

1C 2C

1C 2C

5.222
1

14
1 24 =+ xx . 

 
4  Control of Limit Cycle Using State 

          Feedback 
Consider the following nonlinear 

autonomous system 

⎪⎩

⎪
⎨
⎧

=

=

),,(

),,(
*
22122

*
12111

uxxfx

uxxfx

&

&
                                      (18) 

where and  are the control inputs as the 
form of state feedback presented by the 
following equations                                                       

*
1u *

2u

⎪⎩

⎪
⎨
⎧

=

=

),(

),(

212
*
2

211
*
1

xxhu

xxhu
.                                           (19) 

 Now, the question is that how and 
must be chosen so that an asymptotic 

stable limit cycle can be added to the system 

(18)? The condition 

),( 211 xxh
),( 212 xxh

0),( 211 ≥
dt

xxdu  on the 

trajectories of the system (18) in the theorem 3 
can be rewritten as following inequality 

0),,(),(

),,(),(

*
2212

2

211

*
1211

1

211

≥

+

uxxf
dx

xxdu

uxxf
dx

xxdu

                      (20)  

and in the similar manner the 0),( 212 ≤
dt

xxdu   

appeared in the theorem 3, can be expressed as  

0),,(),(

),,(),(

*
2212

2

212

*
1211

1

212

≤

+

uxxf
dx

xxdu

uxxf
dx

xxdu

.                   (21) 

The inequalities (20) and (21) give the 
conditions which have to be satisfied by , 

, and in order to appear 
an asymptotic limit cycle in the system (18). 

*
1u

*
2u ),( 211 xxu ),( 212 xxu

 
Example 4: Consider the following system 

⎪⎩

⎪
⎨
⎧

+−−=

+−=
*
22

2
112

*
1

3
1

7
21

uxxxx

uxxx

&

&
                                  (22) 

It is clear that the equilibrium point at the 
origin is asymptotic stable. Now, the state 
feedback lows ( and ) have to be 
determined so that an asymptotic stable limit 
cycle can be added to the resulted closed loop 
system. By choosing equipotential curves as 

*
1u *

2u

1
8

2
2

1211 4),( Cxxxxu =+= ;        (23) 120 1 <<C

2
8

2
2

1212 4),( Cxxxxu =+= ;             
(24) 

214 C<

and replacing (23) and (24) in (20) and (21), 
respectively the following inequalities are found 

0)(8)(8 *
22

2
11

7
2

*
1

3
1

7
21 ≥+−−++− uxxxxuxxx ;   

for                                    (25) 1240 8
2

2
1 <+< xx

and 
0)(8)(8 *

22
2

11
7

2
*
1

3
1

7
21 ≤+−−++− uxxxxuxxx ;   

for .                                        (26) 8
2

2
1414 xx +<

It can be derived from (25) and (26) that 
08888 *

2
7

2
*
11

8
2

2
1

4
1 ≥++−− uxuxxxx ;    

for                                    (27) 1240 8
2

2
1 <+< xx

and  
08888 *

2
7

2
*
11

8
2

2
1

4
1 ≤++−− uxuxxxx ;    

 for .                                       (28)  8
2

2
1414 xx +<

By choosing the state feedback laws as the 
following forms  

⎪⎩

⎪
⎨

⎧

==

+==

0),(

)
4
3(),(

212
*
2

8
21211

*
1

xxhu

xxxxhu β
                    (29) 
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Fig. 3.The system has an asymptotic stable limit cycle. 
and by replacing (29) in (27) and (28), the 
following inequalities are found as the 
conditions to appear an asymptotic limit cycle 
in the system  

0)44(2 8
2

2
1

2
1 ≥−+− βxxx ; 

 for                                   (30) 1240 8
2

2
1 <+< xx

and   
0)44(2 8

2
2

1
2

1 ≤−+− βxxx ; 

for .                                        (31)   8
2

2
1414 xx +<

The inequalities (30) and (31) both are satisfied, 
when 

3
143 ≤≤ β .                                                   (32) 

It also follows from the theorem 3 that the 
asymptotic stable limit cycle L , which is added 
to the system (18) using state feedback, appears 
in the following region 

{ }14412),( 8
2

2
121 ≤+≤⊂ xxxxL .                (33) 

 
 
5  Design of Oscillation in Electronic 
Circuits 

Consider the basic model of an oscillator 
shown in Fig. 4 including LC tank and 
dependent current source. The state equations of 
the circuit can be written as the following 
autonomous system 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

+−=

12

*
121

1

11

x
L

x

u
C

x
C

x

&

&

                                      (34) 

where  and  are defined as the voltage 
which appears across the capacitor and the 

current of the inductor respectively. As we see 
the dependent current source plays the role of 
the control input. By considering the equation 
(19) and defining the state feedback as the 
following equation 

1x 2x

11
*
1 )( xxfu ∞=                                              (35) 

, the equation (34) can be rewritten as 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

+−= ∞

12

1121

1

)(11

x
L

x

xxf
C

x
C

x

&

&

                        (36) 

where ∞. is infinite norm and  is 
determined by the electronic elements such as 
BJT, MOSFET and… used to design the 
oscillator. Now, the equipotential curves 

).(f

1211 ),( Cxxu =  and  are 
considered as the circles surrounding the origin 
and described by the following equations 

2212 ),( Cxxu =

1
2

2
2

1211
11),( Cx
C

x
L

xxu =+=                      (37) 

2
2

2
2

1212
11),( Cx
C

x
L

xxu =+=                     (38) 

where 21 CC ≤ . By checking (12) and (13) of 
the theorem 3, we have 

0)(2),( 2
11

211 ≥= ∞ xxf
LCdt

xxdu                  (39) 

0)(2),( 2
11

212 ≤= ∞ xxf
LCdt

xxdu .               (40) 

It is clear that above inequalities can not both be 
satisfied unless  

0)( 1 =∞xf .                                                (41) 
This is the necessary and sufficient condition to 
appear oscillation in the circuit.  

Suppose that the oscillation appearing in the 
circuit is as the form of sinusoidal wave, in 
other word the voltage appearing across the 
capacitor of the tank is expressed by the 
following equation   

)cos(1 tVx sm ω=                                            (42) 
It is clear that 

LCs
1

=ω                                                    (43) 

and 
msm VtVx ==∞ )cos(sup1 ω                         (44) 

, so the equation (32) can be rewritten as 
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0)()( 1 ==∞ mVfxf .                                  (45) 

 
Example 5: Consider the Hartly and Colpitts 

oscillators shown in Fig. 5 and Fig. 6 and their 
equivalent circuit shown in Fig. 7. The 
equivalent circuit can be summarized and 
drawn again as Fig. 8. By comparing Fig. 8 and 
Fig. 4 and using equation (45), the necessary 
and sufficient condition to appear sinusoidal 
oscillation on the output of the Hartly and 
Colpitts oscillators can be found as the 
following equation 

0))(()()( 2 =+−−=
α

mm
ELmmm

nVGGnGnnVGVf        

where is the large signal 
transconductance of the BJT used in the 
oscillator. It derives from the above equation 
that 

).(mG

)1(
)(

2

α
nn

GnGnVG EL
mm

−

+
= .                               (46) 

From equation (46), the necessary and sufficient 
condition to appear oscillation in the Colpitts 
oscillator can be rewritten as 

)1(

)( 2

α
nng

GnG
g
nVG

m

EL

m

mm

−

+
=                                (47) 

where is the small signal transconductance 
of the BJT evaluated at the quiescent point. By 

defining 

mg

)( q
kT
nVx m=  where 

K
Jk 231037.1 −×=  

is boltzmann constant and  is 
the charge of an electron, the equation (47) can 
be rewritten as  

Cq 19106.1 −×=

)1(

)( 2

α
nng

GnG
g

xG

m

EL

m

m

−

+
= .                                   (48) 

On the other hand, we have [3] 
 

]
)(

))(ln(1[
)(
)(2)( 0

0

1

kT
qV

xI
xxI
xI

g
xG

m

m

λ
+= ,                    (49) 

where  is the sum of the quiescent voltages 
appearing across the total resistance between 

base and emitter and  is a modified Bessel 
function of order n and is defined as  

λV

)(xIn

∫
+

−
=

π

π
θ θθ

π
dnexI x

n )cos(
2
1)( cos .                (50)  

It can be derived from equations (48) and (49) 
that 

)1(
]

)(

))(ln(1[
)(
)(2 2

0

0

1

α
λ nng

GnG

kT
qV

xI
xxI
xI

m

EL

−

+
=+ .            (51) 

The equation (51) can be used to earn the 
amplitude of the oscillation ( ).   mV

 
Example 6: Consider the Colpitts oscillator 

shown in Fig. 9 so that , , 

, , , 

and 

Ω= kRL 10 nFC 11 =

nFC 792 = Ω= kRE 20 HL μ10=

VVCC 10−= 199.0 ≈=α . 

We have 

nF
CC

CCC 1
21

21 ≈
+

= ,
80
1

21

1 =
+

=
CC

Cn , 

 and VV 3.9=λ mA
k

V
II EC 465.0

20

3.9
=

Ω
=≈ . 

The frequency can be found as 
 

 
Fig. 4. The basic model of an oscillator. 

 
 

 
Fig. 5. The Hartly oscillator.  

 

WSEAS TRANSACTIONS on SYSTEMS Hassan Fathabadi, Nikos E. Mastorakis

E-ISSN: 2224-2678 112 Issue 3, Volume 11, March 2012



   
Fig. 6. The Colpitts oscillator. 

 
 

 
Fig. 7. The equivalent circuit of the oscillators. 

 
 
 

 
Fig. 8. The summarized equivalent circuit of the 

oscillators. 

sec101 7 rad
LCs ==ω  

and  

1

56
1 −Ω==

kT
qIg C

m . 

Replacing , , , mg n LG α  and EG  in equation 
(44) results that 

448.0]
)026.0

3.9(
))(ln(1[

)(
)(2 0

0

1 =+
xI

xxI
xI                     (52) 

 We obtain  and the numerical solution 

of the equation (52) and replacing in 

5.3≈x

)( q
kT
nVx m=  

gives , and finally VVm 9.7=

][)10cos(9.710)( 7 vttVO += .                      (53) 
The circuit was simulated by PROTEUS-6 

software and again repeated by PSPICE-8 

software, the results were the same. As we see, 
the result of the simulations shown in Fig. 10, 
validates the proposed geometric method and 
the numerical result expressed by eq. (54). 

 
Example 7: Consider the Hartly oscillator 

shown in Fig. 11 so that , 

,  , 

Ω= kRL 10

nFC 10= Ω= kRE 20 HL μ11 = , 

HL μ
80
1

2 = , and VVCC 10−= 199.0 ≈=α . 

We have  

HLLL μ121 ≈+= ,
80
1

21

2 ≈
+

=
LL

Ln , 

 and VV 3.9=λ mA
k

V
II EC 465.0

20

3.9
=

Ω
=≈ . 

The frequency can be earn as 

sec101 7 rad
LCs ==ω  

and  

1

56
1 −Ω==

kT
qIg C

m . 

Replacing , , , mg n LG α  and EG  in equation 
(51) results that 

448.0]
)026.0

3.9(
))(ln(1[

)(
)(2 0

0

1 =+
xI

xxI
xI                     (54) 

 Again we obtain 5.3≈x  and the numerical 
solution of the equation (46) and replacing in 

)( q
kT
nVx m=  results that  . So we 

have  

VVm 9.7=

][)10cos(9.7)( 7 vttVO = .                             (55)                  
Again the simulation result shown in Fig. 12 
validates the proposed geometric method and 
the numerical result expressed by eq. (55). 

 
6 Conclusion 

In this paper, the behavior of a second-order 
dynamical system around its equilibrium point 
was analyzed based on the behavior of some 
appropriate equipotential curves which were 
considered around the same equilibrium point. 
In fact two sets of equipotential curves were 
considered so that a set of the equipotential 
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curves had a role as the upper band of the 
system trajectory and another set played a role 
as the lower band. It was shown that stability of 
the system around its equilibrium point can be 
assessed using the behavior of these two set of 
equipotential curves. It was shown that the 
proposed geometric method can detect a stable 
limit cycle appearing in the systems and also 
the method has some useful applications such as 
designing of oscillators. Some examples and 
practical design of oscillators were presented 
and simulation results validated the presented 
method. For future works the method can be 
extended for analyzing of third order dynamical 
systems.  

 
 

Fig. 9. The simulated Colpitts oscillator.   

 
Fig. 10. The result of the simulation. 

 

   
Fig. 11. The simulated Hartly oscillator. 

 
Fig. 12. The result of the simulation. 
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